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Nonlinear solutions of modified plane Couette 
flow in the presence of a transverse magnetic field 

By M. NAGATA 
School of Mathematics and Statistics, The University of Birmingham, Edgbaston, 

Birmingham B 15 2TT, UK 

(Received 24 January 1994 and in revised form 12 July 1995) 

A nonlinear analysis is performed numerically for the motion of an electrically 
conducting fluid between parallel plates in relative motion when a transverse magnetic 
field is applied. It is found that steady three-dimensional finite-amplitude solutions 
exist even when the linear analysis predicts an infinite critical Reynolds number. 

1. Introduction 
Thirty years ago Kakutani (1964) investigated the linear stability of a hydromag- 

netic plane Couette flow modified by the presence of a transverse magnetic field with 
the following results. As in the case of purely hydrodynamic plane Couette flows the 
critical Reynolds number is infinite for any wavenumber as long as the Hartmann 
number H, which measures the strength of the applied magnetic field, is moderate 
(0 d H d 7.82). As the Hartmann number is increased from 7.82 the critical Reynolds 
number decreases sharply from the infinite value, indicating the destabilizing effect of 
the magnetic field. The minimum value of the critical Reynolds number occurs when 
H is 10.8. Further increase of H results in the increase of the critical Reynolds number 
to its asymptotic value so that the magnetic field stabilizes the flow for H > 10.8. 
Growing disturbances in the range of the Hartmann number greater than 7.82 are all 
characterized by oscillatory instabilities. These results are obtained by applying the 
Squire theorem so that only two-dimensional disturbances are considered. 

It should be emphasized that the understanding of the interaction between shear 
flows and magnetic fields is one of the decisive factors in designing heat transfer 
machines such as magnetohydrodynamic(MHD) power generators and nuclear fu- 
sion devices (Girshick & Kruger (1986) and Molokov (1993) and references therein). 
Also, it is widely believed that the magnetic field of the Earth is strongly influ- 
enced by the presence of hydrodynamic shear motions in the liquid core. Yet, in 
spite of the recent progress in geophysical and astrophysical MHD studies (see, for 
instance, Proctor & Gilbert 1994), nonlinear analyses of a simple system such as 
was considered by Kakutani (1964) have not been developed so far. In the present 
paper three-dimensional finite-amplitude solutions discovered recently in the case of 
purely hydrodynamic plane Couette flows by Nagata (1990) are continued to the 
magnetohydrodynamic case. 

2. Formulation of the problem 
We consider an electrically conducting fluid of electric conductivity CJ and magnetic 

permeability p between two parallel plates separated by the distance L. The bottom 
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FIGURE 1. Physical configuration. 

plate moves along in its own plane, indicated by the x-direction in figure 1, with 
a constant speed ~ U O  whereas the top plate moves in the negative x-direction with 
speed - ~ U O .  Both plates are electrically insulated. Owing to the viscosity v of the 
fluid a shear motion is induced across the fluid layer and the profile of the motion 
is modified by an applied transverse magnetic field Bo through the Lorentz force. We 
assume that the fluid is incompressible with a constant density p. Then, the motion 
is governed by the equation of continuity, 

v . u  = 0, (2- 1) 

the conservation of momentum, 

au 
- + RWVU = -vp + v 2 u  + u 2 ( v  x B )  x B, 
at 

(2.2) 

the absence of magnetic monopoles, 

V - B = O ,  (2.3) 

and the induction equation, 

P r n { g -  

where the velocity u and the magnetic field B are normalized by VO and Bo, respec- 
tively. Time t and the position vector r = (xl + y j  + z k )  with i, j ,  k being the unit 
direction vectors are already nondimensionalized in the equations above by using the 
time scale for the viscous dissipation L2/v and the length scale L. The nondimensional 
parameters controlling the system are the Reynolds number, 

A A h  

the Alfvkn number, 

and the magnetic Prandtl number, 

P, = pcrv. 
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In order to simplify the problem we assume that the magnetic Prandtl number 
P,,, is small but the Alfvkn number A is large enough for the Hartmann number H 
defined by 

to retain its finite values (see Chapter 5 of Roberts 1967). The limit of small Prandtl 
number is appropriate for liquid metals used in laboratory experiments or in MHD 
power generators. The limit is also applicable in the liquid core of the Earth and 
magnetic stars. Finite Hartmann numbers are characteristic flows in these situations. 

The no-slip condition for the velocity and the insulating condition for the magnetic 
field are given on the plates at z = ki: 

H = P,,!,I2RA (2.8) 

(2.9) 

(2.10) 

- 1 0  
u = +zz, 

f f - V  x B = 0. 
In addition, the magnetic field of the fluid must be matched to the potential field in 
the insulating exterior. Expansions of u, B, and the pressure p in powers of P, << 1, 
i.e. 

(2.11) 

(2.12) 

u = u(o) + pmu(1) + p i p )  + . . . 

B = b(O) + p,b(') + p2$2)  + . . ., 
= p(o)  + pmp(1) + pip@) + . . . 

yield the following equations at the lowest order: 
(2.13) 

with the boundary conditions 
u(o) = - 1 ? +p, 

I; - v x b(0) = 0 

at z = -li. From (2.17) and (2.19) b(O) is immediately solved: 

(2.18) 

(2.19) 

b(O) E I;. (2.20) 

The magnetic field in the exterior must be constant if it is independent of the 
coordinates, x and y. 

Substitution of (2.20) into (2.2), the solenoidal condition for b(') and the inclusion 
of the induction equation at the next order close the system. The final equations to 
be solved are 

v . u  = 0, (2.21) 

(2.22) 
au 
- + U *  VU = .-Vp + V2u + H2(V x b)  x f f ,  
at 

V - b  = 0, (2.23) 

(2.24) V2b = -(L * V)u, 
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subject to the boundary conditions 

u = TiRt,  (2.25) 

f * V x b = O  (2.26) 
at z = &;, where the superscripts of do), b(') and p(O) have been dropped after do) 
and p(O) are rescaled by the Reynolds number, i.e. u = Ru(O) and p = Rp(O). The system 
accommodates the basic laminar flow solution 

u = U(z)i ,  b = B(z)i ,  (2.27) 
A A 

with 
R sinh H z  
2 sinh H/2 '  

U ( z )  = - 

and 
Rcoth cash Hz 

2H (1 - cash H / 2  
B( z )  = - 

(2.28) 

(2.29) 

Note that (2.29) satisfies the condition B( f i )  = 0, i.e. the tangential component of 
the magnetic field is continuous across the insulating boundaries. 

We are interested in the situation where the fields, u and 6, deviate from this basic 
state. After substituting perturbed fields with G and 6 being fluctuations, we operate 
with k V x V x ,  f - V x  on (2.22) and f - V x ,  f -  on (2.24). Then, we obtain 

(08, - V 2  + at)V2A24 - iTlldxA24 - H2d,V2A2h + f * V x V x [G VG] = 0, 

(O& - V 2  + dt)A2y - O'dyA24 - H2a,A2g - L * V x [G VG] = 0, 

(2.30) 

(2.31) 

V2A2h = -d,A24, (2.32) 

V2A2g = -d,A?;~p, (2.33) 
where a is the partial differential operator with respect to its subscript, A2 = d:, + 
is the two-dimensional Laplacian operator, and the prime denotes differentiation with 
respect to z. (When the flow is time-independznt, the prtme denotes ordinary differ- 
entiation with respect to z.) The mean fields, U(t , z )  and B(t,z) ,  include modifications 
f i ( t , z )  and &t,z) due to the nonlinear nature of the system: 

(2.34) 

The poloidal and the toroidal parts of the disturbed solenoidal fields G and 6 whose 
xy-averages are zero are denoted by 4 , ~  and h,g, respectively, so that the total fields, 
u and b, now become 

u = ( U ( z )  + ir(t,z))Z+ v x v x 44 + v x f y ,  (2.35) 

b = (B( z )+ i ( t , z ) )Z+V x V x kh+V x f g .  (2.36) 

The equations for fi and k are obtained by taking the xy-average of the x- 

O(t,z)  = U(Z) + f i( t ,z) ,  &,z) = B(z )  + B(t,z) .  

component of (2.22) and (2.24): 

(2.37) 

a:J = -a& (2.38) 
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The boundary conditions at z = ki are 
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v v  4 = az4 = = = r~ = B = 0. (2.39) 

Since h can be eliminated by (2.30) and (2.31), there is no need to specify the boundary 
conditions for it as far as the detection of nonlinear solutions is concerned. 

3. The symmetry 
By using (2.32) and (2.33), those terms involving h and g in (2.30) and (2.31) are 

readily expressed in terms of 4 and y with the result that the symmetry with respect 
to z is unaltered. To see this, compare these terms with, for example, the viscous term 
in each equation: the symmetry of h (or g) operated on by a, an odd number of times 
is related to the symmetry of (or y )  with the same operation an even number of 
times. The Laplacian operators do not change the symmetry. 

By taking into account of the f$ct tha: U is antisymmetric in z, we solve (2.38) 
with the boundary conditions for U and B :  

&t,z) = - L,2 fi(t,z)dz. 

The above argument leads to the following three equations for 4, y and fi: 
(08, - V2 + at)V2A24 - 9 a x A 2 4  + H2d:zA24 + k - V x V x [& * V q  = 0, 

(08, - V2 + &)A21p - O'ayA24 + H2aZzV-2A2y - k - V x [& VG] = 0, 

- a,fi + a;$ - ~ ~ f i  + a z ~ 2 4 ( a ; z 4  + ayv) = 0, 

with the boundary conditions 
" 

4 = az4 = = u = o 
at z = ki. The inverse Laplacian operator VP2 in (3.3) is given in the Appendix. 
Comparison of (3.2), (3.3) and (3.4) with the basic equations for three-dimensional 
nonlinear hydrodynamic plane Couette flows (see equations (l), (2) and (3) of Nagata 
1990 with SZ = 0) leads to the conclusion that the effects of the magnetic field, namely 
those additional terms with H2 as a factor in the equations above, do not change the 
symmetry of the pure hydrodynamic case in the limit considered in the present paper. 

As in the purely hydrodynamic case considered by Nagata (1990), only steady 
solutions are of interest here. First, he expanded 4,y and fi in each of the three 
spatial directions in terms of an appropriate set of orthogonal functions, i.e. 

l=1 m=-co n=--00 

00 

k = l  
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(3.9) 

(f odd) 

(f even) 

(3.10) 

(3.11) 

fe(Z)  are known as the Chandrasekhar functions (Chandrasekhar 1961), which satisfy 
f(i-i) = f(+l) = 0. Next, he restricted his attention to the following set of interacting 
components to obtain finite-amplitude steady three-dimensional solutions in plane 
Couette flow: 

’cos rn’ ax cos n’ py fp ( z )  
cos  EX cos d’py f p ( Z )  

cos rn’ ax sin n”py fetr(z) 

cos m”ax sin n’ py  f p  ( z )  
sin rn’ ax cos n’ py fp(z) 
sin m”ax cos n”py f p  ( z )  
sin rn’ ax sin n”py f i r  ( z )  

.sin m”ax sin n’ py f p ( Z )  

’ cos rn’ ax cos n”py sin P n ( z  + i) 
cos m”ax cos n’ b y  sin 8’ n(z + i) 
cos rn’ ax sin n’ B y  sin /’ n(z + i) 
cos m”ax sin n”py sin P n ( z  + i) 
sin rn’ ax cos n”py sin f ’  n(z + i) 
sin m”ax cos n’ py sin f’’n(z + i) 
sin rn’ ax cos n’ b y  sin t”n(z + i) 

~ sin m”ax cos n”py sin f ’  n(z + i) 

(3.12) 

(3.13) 

where m’, n ’ ,  t’ represent any odd integers whereas rn”, n”, f” represent any even 
integers. The fact that (3.2), (3.3) and (3.4) preserve the symmetry of the pure hydrody- 
namic case allows us to use the same set of interacting components (3.12) and (3.13) in 
the present analysis. It is easily verified that the set, (3.12) and (3.13), is closed in non- 
linear interactions: modes outside this set, for example, 4 cc cos m”ax cos n’ py  f i r  ( z ) ,  
can never be produced through nonlinear interaction among the modes within the set. 

4. Numerical results 

so that only those components with atmn, bernn and ck whose subscripts satisfy 
For numerical purposes the infinite series in (3.6), (3.7) and (3.8) must be truncated 

8 + Irnl + In1 < N T ,  k < Nk (4.1) 
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N,, N,' Mt upper branch Mt lower branch Number of amplitude coefficients 
13,ll 2.1389078 1.786455 589 

15,13 2.1426865 1.701963 930 
16,14 2.1442994 1.653146 1127 
17,15 2.1441258 1.676721 1383 
18,16 1.666 144 1640 

14,12 2.1461879 1.609741 734 

TABLE 1. The momentum transport: CI = 1.6,p = 3.0, R = 600, H = 0. 

H =  10 - 
Mt 4 I 

/ 5  
//2 

I I I 

1000 2000 3000 4000 
R 

FIGURE 2. The abrupt appearance of the nonlinear solutions: CI = 1.6,p = 3.0 for H = 0,2,5; 
CI = 2.0,/3 = 4.5 for H = 10. Straight dashed lines are the momentum transports for undisturbed 
flows calculated from (2.28). 

are taken into account. The resulting finite set of nonlinearly interacting components 
are solved in terms of their amplitudes, atrnn, bernn and ck, numerically by using the 
Galerkin method combined with the Newton-Raphson method. 

Three-dimensional solutions for the purely hydrodynamic case have been presented 
in Nagata (1990). Since the time of the publication of that paper accuracies have been 
improved a great deal as shown in table 1. In the table, the momentum transport Mt 
to be defined by (4.2) is tabulated against ( N T ,  N k )  for H = 0. The relative difference 
of the momentum transport at successive truncation levels is 0.01% on the upper 
branch at the truncation level (17,15), whereas it is 0.6% on the lower branch even 
when the truncation level is increased to (18J6). Although the convergence is slow 
on the lower branch, the existence of the upper branch assures the existence of the 
lower branch automatically because of the absence of any bifurcation points on the 
laminar solution at any R. 

In the following calculations the truncation level (14,12) is employed for economical 
reasons. The detected solution branches are shown in figure 2 where, as a measure of 
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the nonlinearity the momentum transport at the boundaries, 

is plotted against the Reynolds number for various Hartmann numbers. The solution 
branches for H = 2 and 5 in figure 2 are obtained from the one for H = 0 with 
a = 1.6,p = 3.0 (Nagata 1990) by gradually increasing the Hartmann number. It is 
found that as the Hartmann number is increased the abrupt bifurcation, which can 
be seen to take place at R = 500 when H = 0, is delayed to a larger Reynolds number 
indicating the stabilizing effect of the magnetic field. Both the upper and lower 
branches of the finite-amplitude solutions have more effective momentum transport 
than the undisturbed laminar flow has for fixed Hartmann numbers. The linear theory 
(Kakutani 1964) indicates no bifurcation points on the laminar solution branch for 
Hartmann numbers 0 < H < 7.82. Therefore, it can be argued that the solution 
branches in figure 2 originate from the infinite value of the Reynolds number. 

Attempts to continue the solution detected at R = 2000,H = 5 to larger H without 
changing the wavenumbers a = 1.6 and p = 3.0 failed. It turned out that for H = 0 
the closed region for the existence of the solutions in the (a,p)-plane expanded in 
all directions with a shift of its centre to larger p (see figure 3a,b) as the Reynolds 
number was increased. The corresponding region for R = 2000, H = 5 is indicated in 
figure 3(c). When either the Reynolds number or the Hartmann number is increased 
slightly from R = 2000,H = 5, the point (1.6, 3.0) in the (a,P)-plane moves out of 
the region of existence of the solutions. After learning this fact the solution branch 
for H = 10 in figure 2 was obtained by first gradually increasing the wavenumbers of 
the soluitons at H = 5 in figure 2 to larger values and then increasing the Hartmann 
number while carefully controlling the Reynolds numbers. 

In figure 4 the modification of the mean flows at R = 1000 is compared for three 
different Hartmann numbers H = 0, 2 and 5. The larger the magnetic fields become, 
the weaker are the modifications to the mean flows for the solutions on both upper and 
lower branches (the distance between the solid curve and the dashed curve in figure 4 
gets narrower as the Hartmann number is increased at any position z in the fluid layer). 
The degree of inflection in the mean velocity profile is less affected by the presence of 
a stronger magnetic field. As far as the velocity field is concerned, the strength of the 
modification from the basic laminar flow due to the magnetic field is represented by 
the change in the Reynolds number measured from the turning point where the abrupt 
appearance of the nonlinear three-dimensional solutions takes place. The distance is 
shorter for a stronger magnetic field at a fixed Reynolds number (see figure 2). 

As in the case of purely hydrodynamic flows (Nagata 1990), the velocity field is 
characterized by strong localized currents (not electric currents) in the streamwise 
direction which meander in a sinusoidal manner in the spanwise direction (see 
figure 5).  Also shown in figure 5 are contours of the helicity E 

(4.3) L! = u * v x u .  

The regions of large helicity coincide with those of strong currents. Along a current 
the helicity changes its sign, taking maxmum and minimum values, indicating a 
helical fluid motion within the current where the direction of the rotation changes 
alternatingly along the streamwise direction. 

Associated with the helical motion is the generation of the spanwise component of 
the magnetic field. The magnetic field b in (2.36) is projected on the (y,z)-plane in 

- 
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FIGURE 3. The region of existence of the nonlinear solutions. White/black circles indicate whether 
the nonlinear solutions are/are not detected. (a) R = 525,H = 0, ( b )  R = 600,H = 0, ( c )  

0 

R = 2000. H = 5. 

figure 6. We have solved (2.32) for h in a similar manner as g was obtained in the 
Appendix. Since h must match the counterpart of the potential magnetic field outside 
the boundaries, we have used 

(4.4) 

at z = kk, where 

h = C rm,,(Z) exp i(max + npy),  (4.5) 
m,n 

as an appropriate boundary condition for h. The streamwise vorticity 
h 

o = i . V x u  (4.6) 

is also plotted in figure 6. The whole fluid layer is separated into two distinct sub- 
layers which have their spanwise magnetic field in opposite directions. With each 
sub-layer the streamwise vorticity has the same sign. 

5. Conclusion 
Steady three-dimensional finite-amplitude solutions in plane Couette flows modified 

by various strengths of transverse magnetic field are presented by a numerical analysis 
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FIGURE 4. The modification of the mean flows. Solid curves correspond to the mean velocity profiles 
for three-dimensional flows whereas dashed curves correspond to the undisturbed flows (2.28). 
c( = 1.6,B = 3.0,R = 1000. (a) Upper branch, H = 0, (b)  lower branch, H = 0, ( c )  upper branch, 
H = 2, ( d )  lower branch, H = 2, (e) upper branch, H = 5,  0:  lower branch, H = 5.  

based on the spectral method. The numerical results strongly suggest that nonlinear 
solutions can exist even if the linear stability analysis predicts no finite values for the 
critical Reynolds number. Nonlinear solutions appear abruptly at Reynolds numbers 
of the order of thousands for the range of the Hartmann numbers considered 
(0 < H < 10). The minimum Reynolds number, Lin, for the existence of the steady 
three-dimensional solutions seems to increase monotonically from about 500 (at 
H = 0) as H is increased. Therefore, the magnetic field has a stabilizing effect on 
three-dimensional finite-amplitude flows for all Id(< 10) in contrast to 'a rare example 
of the destabilizing effect of the magnetic field on parallel flows of an electrically 
conducting fluid', described by the linear theory (Kakutani 1964). The critical Reynolds 
number, &, predicted by the linear theory is incredibly large: R, = 1.52 x lo6 when 
H = 10.8. In our nonlinear analysis Lin NN 3300 at H = 10. The practicality of the 
linear theory is doubtful. 

The stability analysis of the hydromagnetic solutions obtained is outside the scope 
of the present investigation (one could argue naively that the upper branch bifurcating 
from infinity is stable, whereas the lower branch is unstable). In the hydrodynamic 
cases of Taylor-Couette flow and rotating plane Couette flow, attempts have been 
made to calculate the growth rate of the general three-dimensional perturbations 
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x = 2 d a  x = o  

FIGURE 5. The projection of the steady velocity field indicated by arrows on the planes z=const, 
overlaid with the contours of the helicity 8. Solid thick curves correspond to B = 0. Posi- 
tive/negative is helicity indicated by thin solid/dashed curves with the increment AE = lo5. 
a = 1.6,p = 3.0, R = 2000, H = 5. (a) z = -0.25, (b)  z = 0, (c) z = 0.25. 
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z =  

zr- 

y = o  y = 2n@ 
FIGURE 6. The spanwise magnetic field and the streamwise vorticity w. The projection of the 
perturbed magnetic field on the ( y ,  z)-plane is indicated by the arrows. Solid thick curves correspond 
to w = 0. Positivelnegative w is indicated by thin solidIdashed curves with the increment Aw = 400. 
CI = 1.6,/3 = 3.0,R = 2000,H = 5. (a) x = 0, ( b )  x = rc/2c(, ( c )  x = n/u,  ( d )  x = 3rc/2a, ( e )  x = 27t/a. 

superimposed on the steady three-dimensional solutions for the case of zero rotation 
rate (Nagata 1993,1995), although the results are as yet inconclusive owing to the lack 
of accuracy. However, it is worthwhile mentioning that recently Dr A. Lundbladh 
(private communication through Dr W. Koch at DLR, Germany and Professor D. S. 
Henningson at FFA, Sweden) has observed stable steady three-dimensional flows 
at relatively low Reynolds numbers in his direct numerical simulations for hydro- 
dynamic plane Couette flows. They seem to correspond to the solutions discovered 
by Nagata (1990). Therefore, it is plausible that the steady three-dimensional flows 
obtained here are also stable and thus physically realizable at least when the Hart- 
mann number is not very large. The steady three-dimensional solutions may play an 
important role in the transition to turbulence in hydromagnetic plane Couette flows. 

Appendix 
From (2.33) g is written as 

g = -a,v-2y 

by using the inverse Laplacian VP2. Let g be represented by 

g = C q m , n ( Z )  exp i(max + WPY) .  
m,n 
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Using (3.7) we rewrite (2.33): 

which can be solved with the boundary condition 

and 

with 8‘ and 8’ denoting odd and even integers, respectively. 
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